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Abstract
Understanding how rising global air and sea surface temperatures (SSTs) influence tropical cyclone
intensities is crucial for assessing current and future storm risks. Using observations, climate
models, and potential intensity theory, this study introduces a novel rapid attribution framework
that quantifies the impact of historically-warming North Atlantic SSTs on observed hurricane
maximum wind speeds. The attribution framework employs a storyline attribution approach
exploring a comprehensive set of counterfactuals scenarios—estimates characterizing historical
SST shifts due to human-caused climate change—and considering atmospheric variability. These
counterfactual scenarios affect the quantification and significance of attributable changes in
hurricane potential and observed actual intensities since pre-industrial. A summary of attributable
influences on hurricanes during five recent North Atlantic hurricane seasons (2019–2023) and a
case study of Hurricane Ian (2022) reveal that human-driven SST shifts have already driven robust
changes in 84% of recent observed hurricane intensities. Hurricanes during the 2019–2023 seasons
were 8.3m s−1 faster, on average, than they would have been in a world without climate change.
The attribution framework’s design and application, highlight the potential for this framework to
support climate communication.

1. Introduction

Rising global mean air temperatures and sea surface temperatures (SSTs) are expected to influence tropical
cyclone activity throughout the 21st century (Sobel et al 2016, Collins et al 2019). Hurricane intensity
changes, in particular, are important to understand and elucidate because they are a key driver of storm risks
and damages in the United States (e.g. Schmidt et al 2009, Nordhaus 2010, Emanuel 2011). In this study we
present a novel rapid attribution framework that quantifies how historical increases in North Atlantic SSTs
drive attributable changes in observed hurricane intensities.

Theory and numerical modeling indicate human-caused climate change should strengthen hurricane
intensities on average (Emanuel 2005, Schiermeier 2008, Sobel et al 2016, Murakami et al 2020). Wehner and
Kossin (2024) showed that anthropogenic global warming has already increased the likelihoods of extremely
intense (>86m s−1) tropical cyclone potential intensities (PI; i.e. the theoretical maximum intensity of a
storm given its environment). Higher PI values mean the theoretical maximum speed limits over the Atlantic
have increased, permitting individual storms to reach higher wind speeds in today’s warmer climate.
Observational evidence corroborates this theory: the frequency of major hurricanes (category 3+) has
increased since 1979 (Elsner et al 2008, Holland and Bruyère 2014, Kossin et al 2020). But when a real-world
storm develops and threatens a coastline, to what extent is its maximum wind speed attributable to human
influences?

Connecting these dots is critical for climate communication. Hurricanes—especially landfalling
hurricanes with high intensities—can act as ‘focusing events’ that draw public attention (Birkland 1998,
Arnold et al 2021, Silver and Jackson 2023). Increased attention during and in wake of storms creates
opportunities for public and private discourse around climate and disaster preparedness (Cody et al 2017,
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Wong-Parodi and Garfin 2022). Climate change attribution plays an important role in these discussions.
Social studies have shown that personal experiences with extreme weather and attribution messaging both
have strong potential to influence public perceptions of climate risk and decision-making (Ogunbode et al
2019, Boudet et al 2020, Osaka and Bellamy 2020, Ettinger et al 2021, McClure et al 2022, Thomas-Walters
et al 2024, Zanocco et al 2024). Presenting scientifically-sound estimates, and carefully, deliberately
conveying methodologies can be effective for attribution-driven climate communication (Osaka and Bellamy
2020, Ettinger et al 2021, van Oldenborgh et al 2021, Thomas-Walters et al 2024).

Rapid attribution systems designed and used to produce these estimates can also help the research
community identify which events/conditions are unusual and warrant closer study (Swain et al 2020, Gilford
et al 2022). Today, timely attribution studies of extreme temperatures and other weather events are routinely
performed with peer-reviewed methods and delivered by World Weather Attribution (e.g. Philip et al 2020),
Climate Central (Gilford et al 2022), and others. But key for such messaging is a pre-existing attribution
system that can rapidly and reliably estimate climate’s influence on particular events.

While formal extreme event attribution science has become mature in recent decades (e.g. National
Academies of Sciences 2016, Philip et al 2020), hurricane attribution science is still relatively nascent and
challenging (Seneviratne et al 2021). There is strong evidence from hurricane modeling and ‘storyline’
attribution (see below) that rainfall intensity and accumulation have already increased by ~10% or more for
many individual storms (Van Oldenborgh et al 2017, Trenberth et al 2018, Wang et al 2018, Reed et al 2021,
Reed and Wehner 2023). Attributable damages from hurricanes have also been explored (Strauss et al 2021,
Wehner and Reed 2022). Meanwhile, high-resolution model simulations project that future storm intensities
should increase with ongoing global warming, but suggest anthropogenic influences on recent storms are not
yet strong enough to be significant (Lackmann 2015, Patricola and Wehner 2018, Wehner et al 2019). In
contrast, Pfleiderer et al (2022) used a statistical emulator to show that human influences recently elevated
Atlantic SSTs, making the 2020 hurricane season anomalously active, despite offsets from interannual
variability in atmospheric circulation. They found that ‘SSTs over the MDR [main development region]
contain relevant information’ for estimating attributable hurricane activity in the North Atlantic.

Thus to calculate the influence of human-caused climate change on hurricane intensities, one must first
assess how climate change has influenced SSTs. Specifically, it is critical to obtain or determine a
‘counterfactual’ estimate of what SSTs might be in our modern world without anthropogenic emissions—an
approach commonly used in climate attribution science. In this study we use results from a recent
comprehensive study of historically attributable ocean temperatures (Giguere et al 2024) to derive a
counterfactual scenario of what North Atlantic SSTs would be in the absence of human-caused global
warming. We also consider a suite of additional counterfactual scenarios, with a range of physical and
statistical assumptions to evaluate attribution uncertainties.

Potential intensity theory (e.g. Emanuel 1987, Bister and Emanuel 1998) makes the connection between
SSTs and intensities explicit by assuming tropical cyclones operate like heat engines, tying a storm’s potential
maximum to the storm’s efficiency and fuel availability (i.e. from ocean heat). Changes in the distribution of
actual storm lifetime maximum intensities have a strong empirical relationship with changes in potential
intensity (e.g. Emanuel 2000, Sobel et al 2016, Gilford et al 2019, Sparks and Toumi 2024, Wehner and Kossin
2024). We leverage this statistical relationship to estimate how a storm’s observed actual intensity (AI) might
respond to PI changes that are, in turn, driven by attributable changes in ocean temperatures.

In this study we develop an attribution framework to assess how SSTs made warmer by climate change
are influencing observed hurricane intensities. The framework is designed to underpin a rapid attribution
system for deployment shortly after a hurricane event, with results communicated through trusted
messengers to the public. In section 2 we describe the approach, data, models, and theory of the attribution
framework. Section 3 shows attribution estimates for SSTs, potential intensity, and AI. Included are two
real-world applications of the framework: estimates of SST-driven attributable intensities over the last five
North Atlantic hurricane seasons (2019–2023) and a case study of Hurricane Ian (2022). Study implications
and limitations are discussed in the context of our existing scientific understanding in section 4. Finally, we
summarize our key findings in section 5.

2. Data &methods

2.1. Attribution framework overview
Here we briefly describe the assumptions and scope of the attribution framework. It is designed to rapidly
estimate modern attributable changes in hurricane intensities contributed by human-driven SST changes
(figure 1). Sections that follow detail the data and methodologies of each framework component.

We focus our study on the North Atlantic basin (9◦ N–60◦ N, 100–20◦ W). All climatologies and
anomalies are calculated relative to the 1991–2020 period. Study quantities are computed over a range time
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Figure 1. Components, methodology, and flow of the SST-driven tropical cyclone intensity attribution framework. CI= confidence interval; CF= counterfactual.
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Table 1. Study counterfactual scenarios of attributable changes in North Atlantic basin SSTs.

Symbol Name Counterfactual Description Color

dSSTmod Modern Shifts from [G24, GMT] regression (1982–2021) Dark Red
dSSTmod-ϕ Modern zonal-mean Zonal-mean shifts from [G24, GMT] regression (1982–2021) Purple
dSSTERSST ERSST Shifts from [ERSST, GMT] regression (1900–2021) Orange
dSSTNL Nonlocally- damped

modern
dSSTmod minus fractional nonlocal tropical influences (after Swanson 2008) Navy Blue

periods created by subdividing each year into 31-day bi-monthly periods (labeled tbm) of±15 days centered
on the 1st and 15th of each month (i.e. 12 periods between 1 June–15 November). These approximately
month-long periods are consistent with analyses of previous studies linking observed intensities to PI
(Emanuel 2000, Wing et al 2015, Gilford et al 2019, Sparks and Toumi 2024). In particular, mean analyses
over tbm filters out high-frequency atmospheric noise, as well as storm influences on their own
environments, yielding more representative estimates of the SSTs and PI each storm experiences. Meanwhile,
the range of PI sensitivities across tbm provides a basis for estimating what uncertainties variable
environmental conditions might contribute to attribution (see section 2.3).

Climate attribution compares an event in a current human-influenced climate with a simulated outcome
in an alternative climate—a counterfactual—without anthropogenic forcing. In this study we use
‘counterfactual scenario’ to refer to different constructed representations of these simulated outcomes. We
adopt a storyline attribution approach (Shepherd 2016, Lloyd and Oreskes 2018, Shepherd et al 2018),
considering multiple counterfactual scenarios to estimate the attributable shifts1 in SST (dSST, ◦C) across the
North Atlantic since pre-industrial. Counterfactual scenario dSSTs are derived from the methods and results
of Giguere et al (2024) by computing the temperature change between counterfactual and observed modern
distributions with SSTs that are representative of the seasonal and location-specific conditions at each storm’s
lifetime maximum intensity (section 2.2).

Attributable SST changes are used to determine the associated attributable changes in hurricane potential
intensity (e.g. Emanuel 1986). We characterize and exploit strong linear relationships between SSTs and PI
changes to calculate PI shifts attributable to the set of counterfactual scenario SST shifts (dPI, in m s−1).
Relying on the historically robust statistical relationship between observed AI and PI (Emanuel 2000, Gilford
et al 2019, Sparks and Toumi 2024), we use the SST-driven attributable dPI to estimate historically
attributable AI shifts (dAI, in m s−1). Attributable PI and AI changes are estimated at the time, location, and
wind speed of a storm’s lifetime maximum intensity (as defined in section 2.4.1).

We present intensity attribution estimates for Atlantic hurricanes over 2019–2023 to demonstrate the
attribution system’s design, development, and implementation with real storms.

2.2. SST attribution
Our data and models are based in part on the published analyses of Giguere et al (2024, hereafter G24, their
figure 1) which adapts established attribution protocols and techniques (Philip et al 2020, Gilford et al 2022).
We combine statistics, simulated SSTs from the Coupled Model Intercomparison Project Phase 6 (CMIP6;
Eyring et al 2016), and observations from the Optimum Interpolation SST version 2 (OISST; Reynolds et al
2002) into a multi-method approach to attribute historical SST changes to human-caused climate change.

For each observed SST (SSTobs) in the record, we find its associated quantile in the observed distribution,
and then resample that quantile on the counterfactual distribution to compute a counterfactual SST. We then
compute dSSTs, defining them as the difference between SSTobs and the counterfactual SST at the location
and during the time period (tbm) of each storm’s analyzed lifetime maximum intensity (section 2.4.1). This
follows a storyline approach for attribution (e.g. Shepherd et al 2018) by focusing on the magnitude of dSSTs
across each counterfactual scenario, rather than on the changes in likelihood associated with SSTobs across
scenarios. This framing allows us to calculate and assess the attributable dPI and dAI responses for each
scenario and their uncertainties individually, disambiguating how each representation of attributable SSTs
might have effectively influenced historical hurricane intensities (sections 2.3 and 2.4).

We develop and apply four different SST counterfactual scenarios to estimate and bound their historical
contributions to attributable changes in contemporary Atlantic hurricane intensities (table 1). Each scenario
characterizes how storm environments have changed historically; they span a range of assumptions about

1 These attributable ‘shifts’ in the attributed variable’s native unit are often technically referred to as attributable ‘intensities’ in climate
attribution literature. We use ‘shifts’ throughout to avoid confusion with our subject, hurricane intensities.
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how and to what extent human-caused SST warming has historically influenced AI. The scenarios are
Modern, Zonal-mean Modern, ERSST, and Nonlocally-damped Modern; each is described below.
Modern (dSSTmod): This is the baseline scenario directly implementing G24’s OISST approach.

Empirical- and model-derived attributable dSSTs are averaged together to produce a set of best estimate
counterfactual shifts over the North Atlantic basin. The empirical observation-based approach analyzes the
linear relationships between the 3-year running average of global mean temperature (GMT) and local
observed temperatures from OISST to produce empirical modern and counterfactual distributions.

Observation-based SST distributions are constructed by first regressing the local timeseries of median or
quantile SSTs (over each tbm) against GMT over 1982–2023. These distributions are then shifted using their
linear relationships and the observed attributable GMT change since pre-industrial (+1.2 ◦C as of 2021,
Eyring et al 2021), either uniformly across the distribution (i.e. ‘median method’ in Gilford et al 2022) or
quantile-by-quantile to allow for historical variance changes (‘quantile method’). Counterfactual
distributions resulting from the median and quantile methods are equally weighted and resampled to
produce a single observation-based dSST value for each observed SSTobs in the OISST dataset.
Observation-based dSST uncertainties are estimated with the 95% confidence interval given by the standard
error from the GMT and median SST timeseries regression.

Modeled SST distributions are produced from 13 CMIP6 pairs of historical+forced and pre-industrial
control simulations over 1900–2050 (supporting table S1). Model SSTs are bias-adjusted against the OISST
climatology over 1991–2020 following Lange (2019) and regridded to a common 1.5◦ × 1.5◦ grid (Zhuang
et al 2023, following G24). Each model’s counterfactual distribution is taken from its pre-industrial control
simulation, while simulated modern distributions are estimated from the 31-year period centered on the year
each model crossed+1.2 ◦C GMT (relative to control). The 13 model-pair attributable shift estimates are
averaged to produce a single model-based dSST value for each observed SSTobs. Model-based dSST
uncertainties are estimated with the 95% confidence interval of the inter-model spread.

Finally, the observation- and model-based dSSTs are averaged together to produce a synthesized set of
‘Modern’ scenario of SST counterfactual shifts (dSSTmod) for each tbm and location in the North Atlantic
basin. dSST uncertainties from models and observations are added together in quadrature, conservatively
assuming they are independent.
Zonal-MeanModern (dSSTmod-ϕ): This scenario considers how hurricanes might respond if the portion

of local SSTs attributable to greenhouse gas emissions was zonally-distributed across the globe, smoothing
out the influences of regional climate variability. We take the zonal mean across globally-resolved dSSTmod at
each latitude to find the set of dSSTs for each tbm and location in the North Atlantic basin. Departures from
the zonal mean are interpreted as being driven by local forcing factors such as multi-decadal changes in
ocean circulation or aerosol forcing and feedbacks (e.g. Knutson et al 2019, Rousseau-Rizzi and Emanuel
2021, see section 4).
ERSST (dSSTERSST): This scenario uses a longer (1900–2021) but coarser (monthly at 2◦ × 2◦ resolution)

SST dataset to estimate the historical SST-GMT relationships; the approach reduces the influence of
interannual variability at the expense of resolution. We employ the empirical observation-based
median-method to derive attributable shifts from the Extended Reconstructed SST Version 5 (ERSST; Huang
et al 2015, 2017). While coarser and having higher temporal variance in its early record, ERSST has the
advantage of providing SSTs back to 1900 when attributable GMT was ~0 ◦C (Masson-Delmotte et al 2021).
Figure 2 shows the best-fit line from a regression between a 3-year running mean of annual GMT and
ERSSTs averaged over the North Atlantic main development region (box in figure 4); they share a robust,
upward trend. Importantly, this long-term congruence considers changes before the potentially confounding
effects of human-emitted aerosols (e.g. Evan et al 2009). Our study does not explicitly separate
human-emitted aerosols from the covarying human emissions of greenhouse gases (e.g. Knutson et al 2019,
Trenary et al 2019, Rousseau-Rizzi and Emanuel 2021). Note that the SST rebound in the era after the aerosol
loading peak (late ~1970s) is not excluded from the Modern scenario definition above. However, the ERSST
scenario estimates SST changes associated with anthropogenic emissions over a longer period—long enough
to incorporate and bypass the rise and fall of human-emitted aerosol effects on North Atlantic SSTs.
Nonlocally-dampedModern (dSSTNL): This scenario estimates how nonlocal atmospheric influences

might damp the influence of attributable dSSTs on PI. At each tbm and location in the North Atlantic basin
we construct and compute a linear adjustment to dSSTmod to quantify this effect. Local SST changes are the
strongest driver of local PI changes (see sensitivity calculations, section 2.3). But previous studies have shown
that when local SSTs increase on long timescales, a nonlocal atmospheric response across the tropics can
simultaneously increase upper tropospheric temperatures, affect moisture profiles, and/or affect surface
winds, potentially depressing the overall impact of SST changes on local PI (e.g. Shen et al 2000, Swanson
2008, Vecchi et al 2008, Emanuel et al 2013). Rather than modeling these nonlocal effects explicitly by
adjusting environmental profiles or PI input parameters—which our univariate attribution approach does
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Figure 2. SST and GMT (black curve) anomalies (◦C) relative to 1991–2020 climatologies. OISST (dark red curve) and ERSST
(orange curve) anomalies are averaged over the North Atlantic basin (white dashed box in figure 5); tropical SSTs (navy blue
curve) are averaged over 0–15◦ N and offset by−0.5◦C to aid with visualization. The dashed orange curve represents the North
Atlantic basin-average time-dependant linear SST shift estimated with ERSST over 1900–2021.

not permit—we instead remove an estimated magnitude of the nonlocal influence from the Modern scenario
up front (treating the Modern counterfactual as a baseline), before computing attributable intensity changes
with the damped SST changes. The resulting dSSTNL quantifies a first order estimate of how a nonlocal
atmospheric response to climate warming might limit how representative dSSTs affect attributable PI (and
hence attribitable AI) results. We apply the simple linear damping methodology of Swanson (2008), their
equation (2):

dSSTNL = dSSTmod −α ∗ dSSTtropics (1)

where we calculate the coefficient for the tropical mean contribution, α= 0.46, by maximizing a correlation
between the traditional main development region PI and SST anomalies over 1980–2023; we find very
similar results despite differences in data sources, PI calculations, and the time range of our data being
updated through present (supporting figure S1). dSSTtropics is given by the average of dSSTmod over 0–15◦ N;
over 2019–2023, dSSTtropics = 0.99◦C, so that dSSTNL is on average∼0.46◦C less than dSSTmod (cf figure 3).
Note that other tropical bands were considered (0–20◦ N, 0–25◦ N, 20◦ S–20◦ N) to account for tropical
expansion, but yielded lower correlations. While we have grounded this study’s analysis in the simple linear
expression of equation (1), more complicated depictions of nonlocal damping could be considered in the
future to yield a broader plausible range for this counterfactual.

2.3. Potential intensity attribution
2.3.1. Historical potential intensity analysis
Historical daily potential intensities (e.g. Emanuel 1986, Bister and Emanuel 1998, 2002) are computed with
the ‘tcpypi’ algorithm (Gilford 2020, Gilford 2021). The algorithm calculates PI (in m s−1) using
environmental state variables as inputs: SST, mean sea level pressure, and atmospheric profiles of
temperature and water vapor; algorithm parameter values are left at the tcpypi defaults. Historical 6-hourly
state variables (SST; pmsl; T(p) and q(p) on 28 pressure levels over 1000–70 hPA) are drawn from the fifth
generation ECMWF atmospheric reanalysis (ERA5) downloaded from An Analysis-Ready Cloud-Optimized
Reanalysis Dataset (Carver and Merose 2023) (ARCO-ERA5, accessed 1 April 2024) and averaged to daily
timesteps over 1982–2023 at 0.25◦ × 0.25◦ resolution, and then are grouped by each tbm for sensitivity and
attribution analyses. Climatological (1991–2020) SSTs, and algorithm output PI, outflow temperatures, and
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outflow levels analyzed at each tbm are consistent with published TC PI climatologies (supporting figure S3,
Gilford et al 2017).

2.3.2. Estimating dPI
We determine PI sensitivities to local attributable SST changes with an empirical approach. At each location
and tbm, the distribution of SST-driven PI changes (dPI) is approximated with the linear model:

dPI=
dPI

dSST
∗ dSST (2)

where dSST are the counterfactual shifts in ◦C and their uncertainties (section 2.2; table 1) and
dPI
dSST ∼ f(µ̃,σlower,σupper) is the distribution of PI linear sensitivities (with median, µ̃, and [lower; upper]
bounded confidence intervals [σlower;σupper]) to changes in SSTs. Sensitivity distributions are compiled by
fitting the model’s slope to outputs from empirical simulations: at each storm’s lifetime maximum intensity
location and for each day over the storm’s climatological tbm periods (1991–2020, state variables from 930
total daily environments per bi-monthly period), we recompute potential intensities after adding progressive
0.25 ◦C steps to the observed SST, with steps ranging over−1.25◦C→+1.25◦C (~maximum median dSST
across counterfactual scenarios). During each daily sensitivity computation the other environmental
conditions (T and q profiles, pmsl) remain fixed at their daily values.

2.4. AI attribution
2.4.1. Hurricane track data & lifetime maximum intensity
We illustrate the attribution framework by applying it to historical tropical cyclones at their lifetime
maximum intensities, over the five year period 2019–2023. Observed tropical cyclone best track data are
drawn from the International Best Track Archive for Climate Stewardship version (IBTrACS; Knapp et al
2010, 2018); best tracks provide the 6-hourly mean positions (longitude, latitude) and maximum sustained
wind speeds for each storm in the North Atlantic basin over 2019–2023.

Following the approach described by Gilford et al (2019, their section 2b) observed storms are filtered for
eligibility. We seek to apply potential intensity theory at the time and location of an analysis-appropriate
wind speed maximum along each storm’s track (see Emanuel 2000).

We first consider all storms that attained at least hurricane wind speeds (>32m s−1) at some (6-hourly)
point along their track within the bounds of the North Atlantic basin. We define each storm’s ‘analysis
lifetime maximum intensity’ (hereafter just LMI)—indexing each storm’s time, position, and AI—as the first
6-hourly step when the storm attains its lifetime maximum. If this step’s storm position is over land but the
previous 6-hourly step is over ocean, we instead take that previous step’s time, position, and intensity as the
storm’s LMI. Storms with a lifetime maximum over land for>6 h are considered ineligible for PI theory
application, and are removed from the dataset. Likewise, we remove storms which had their lifetime
maximum intensity abruptly limited by coincidental passage over cold ocean temperatures. After filtering
and identifying storm LMIs, 38 total storms remain for attribution analysis over the 2019–2023 North
Atlantic hurricane seasons.

2.4.2. Relative intensity & estimating attributable AI
We use attributable potential intensity changes to estimate AI changes through their established along-track
statistical relationship. The relative intensity of a hurricane at its LMI, ν = AI

PI , describes the fractional
portion of PI that a storm achieves during its lifetime (e.g. Emanuel 2000). The historical distribution of
relative intensity is uniform; this a robust feature across the literature, indicating that the probability of a
storm achieving any intensity is equally distributed between a lower bound of marginal hurricane wind
speeds (~33m s−1) and an upper bound given by its local PI (Emanuel 2000, Zeng et al 2007, Swanson 2008,
Sobel et al 2016, Gilford et al 2019, Sparks and Toumi 2024). The key property of this distribution for our
purposes is that, if this relationship holds under climate change, then any permanent shift in the distribution
of along-track PI will be accompanied by a similiar shift in AI (e.g. Sobel et al 2016, their supplementary
materials). In this study we assume the relationship has held (i.e. ν has remained fixed) over the period of
anthropogenic forcing, so that when modern observed storms occur they follow the climatological ν
distribution, and,

νmod = νcf →
AImod

PImod
=

AIcf
PIcf

(3)

for any given storm along its track. Recognizing dPI≡ PImod −PIcf and dAI≡ AImod −AIcf, we solve for the
counterfactual AI and the accompanying attributable change in AI in terms of modern observations and dPI:

AIcf = ν ∗ (PImod − dPI) (4)
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→ dAI= AImod ∗
(
1−

PIcf
PImod

)
= ν ∗ dPI (5)

so that historical dPI is the driver of modern attributable AI changes. We evaluate equations (4) and (5) for
each storm over 2019–2023. In cases where storm νmod values exceed 1.0 but are not superintense (e.g.
Persing and Montgomery 2003, Rousseau-Rizzi and Emanuel 2019, approximated as less than ν ∼1.2), we fix
ν= 1 when solving to ensure we do not overestimate the anticipated response. Note that in equation (5) a
storm’s ν bounds how local attributable intensity changes might respond to local PI changes. This
relationship implies that larger absolute dAI values are expected for storms with higher observed AIs (see
Sobel et al 2016), a key property consistent with empirical evidence that major hurricanes are strengthening
in response to climate change faster than weaker storms (Elsner et al 2008, Holland and Bruyère 2014, Kossin
et al 2020). While storm-to-storm variations in dPI clearly affect the final attributability, we find that across
our counterfactuals the lower bound on dAI increases with AImod, as expected (supporting figure S6).

3. Results

3.1. Climate change influences on Atlantic SSTs
Our study considers four counterfactual scenarios: Modern, Zonal-mean Modern, ERSST, and
Nonlocally-damped Modern (section 2.2). Each corresponds with a different assumption of how climate
change influences hurricane intensity through attributable SST changes.

Mean SSTs and mean dSSTs computed over a Gulf/Caribbean-focused main development region
definition (figure 3) illustrate each scenario’s bulk changes and uncertainties (10–30◦ N, 95–50◦ W; white
box in figure 4, following Gilford et al 2017, other basin definitions have qualitatively similar results). All
SSTs have a clear upward trend over the main development region, congruent with the attributable GMT
increase since 1900 (figure 2). Trends in OISST and ERSST are strongly related since 1982, but the OISST
slope is steeper. The OISST trend acceleration around ~1980 is likely related, in part, to a rebound from
reduced anthropogenic aerosol emissions (and accompanying Saharan dust feedbacks) since the 1970s
(Rousseau-Rizzi and Emanuel 2021, discussed below).

Mean dSSTmod shifts are+1.2◦C across the main development region (figure 3), while dSSTERSST and
dSSTzm are about 0.1◦C less attributably warm and dSSTNL is about 0.45◦C less attributably warm. The 95%
confidence interval of dSSTmod across the North Atlantic is a considerable fraction of the signal, but still
indicates Modern scenario attributable shifts are significantly positive, spanning between+0.5◦C and
+2.0◦C (see confidence intervals in supporting figure S4). The 95% confidence interval of dSSTERSST is
1.1◦C narrower than that of dSSTmod. This is likely because the number degrees of freedom in the ERSST
regression with GMT (i.e. the number of years since 1900) are much higher than in the regression with
OISST, and there is no model-based method contribution (along with its uncertainties) used in constructing
the ERSST scenario. The overlap between all of the counterfactual scenario averages and their uncertainties
imply it is difficult to conclude with confidence which counterfactual North Atlantic SSTs might have
followed historically, and which might be most relevant for observed hurricane intensities. Each are plausible
depending on the physical and attribution assumptions made. If we overlay the uncertainty bars of the
dSSTmod main development region mean on that of dSSTNL (our most conservative considered scenario), we
find that the 95% confidence interval does not cross 0◦C (not shown). This indicates that the attributable
SST changes effective for influencing PI (and hence AI) are, on average, significantly>0◦C across the full
range of counterfactual scenarios considered herein.

Figure 4 shows the average dSSTmod across the North Atlantic over the last 5 hurricane seasons
(June–November 2019–2023); this structure is relatively consistent across the six months of hurricane season
(supporting figure S3). The Modern counterfactual scenario shows pervasive SST warming across the North
Atlantic basin, but there are subtle variations that could matter when encountered by an individual storm
during its lifetime; our framework’s along-track approach (section 2.3) accounts for this spatial variability.
The dSSTmod maxima along ~32◦ N is qualitatively consistent with tropical expansion and poleward
increases in PI/observed intensities in response to climate change (e.g. Kossin et al 2014, Collins et al 2019,
Lin et al 2023). dSSTmod is commonly>+1◦C along the U.S. Gulf coast, where these values are collocated
with the LMIs of many landfalling hurricanes over 2019–2023 (though there are seasonal variations in both
attributable SSTs and when each storm occurred, supporting figure S3). dSSTmod is also relatively higher in
the tropical east Atlantic. Lower dSSTmod (<+1◦C) values are located in the central North Atlantic,
stretching north from Cabo Verde and westward across to the Caribbean, up the southeast Atlantic U.S.
coast, and down to the Yucatan. Conspicuously, fewer hurricanes over the last few years appear to have LMIs
in these regions of relatively less attributable warming (figure 4).
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Figure 3. North Atlantic main development region mean attributable SST shifts for each counterfactual (dSSTs in ◦C; table 1)
over 2019–2023 (relative to 1900). Shaded bars and grey lines denote the medians and 95% confidence intervals, respectively.

Figure 4.Mean hurricane season attributable SST shifts from the Modern counterfactual scenario (dSSTmod) over 2019–2023
(contours, ◦C), and lifetime maximum intensity locations from 38 analyzed hurricanes during those five years (hurricane icons).
The white dashed box outlines the North Atlantic main development region used to compute basin-averaged values in figure 2.

The hurricane-season-mean spatial structure of the Zonal Mean, ERSST, and Nonlocally-damped
scenario dSSTs are plotted for comparison in figure 5. Zonal-mean attributable SSTs (dSSTzm, top left panel)
are narrowly constrained across latitudes: shifts range between+0.9 ◦C and+1.4 ◦C. The resulting spatial
structure of the residual between the Modern and Zonal-mean scenarios largely mirrors dSSTmod (top right
panel; cf figure 4). Coarse attributable SSTs from ERSST (dSSTERSST, bottom left panel) are cooler than the
Modern scenario in tropical east Atlantic and along the Florida Gulf coast, while they are warmer in the
central North Atlantic. dSSTERSST values are also qualitatively consistent with dSSTmod values, showing an
expansion of the tropics above 30◦, relatively low attributable warming in the Caribbean and along the
Atlantic southeast coast, and relatively high attributable warming along the western Gulf coast. While shifts
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Figure 5. (Top left) Zonal-mean counterfactual scenario attributable SST shifts (dSSTmod-ϕ). (Top right, red box) Differences
between mean local Modern scenario and Zonal-mean scenario attributable SST shifts (= dSSTmod − dSSTmod-ϕ). (Bottom left)
Mean hurricane season attributable SST shifts (dSSTERSST) estimated from the ERSST scenario with+1.2 ◦C of global warming.
(Bottom right) Derived nonlocally-damped scenario attributable SST shifts (dSSTNL). All SST changes/differences in ◦C and
averaged over the 2019–2023 hurricane seasons.

from the Nonlocally-damped scenario share their spatial structure with dSSTmod, it is less attributably warm
(by definition), with some mean shifts across the central North Atlantic and Caribbean only slightly greater
than 0 ◦C.

3.2. Climate change influences on potential intensity
PI changes are highly linear with the stepwise SST perturbations: 98% of the days analyzed across the tbm and
locations of hurricane lifetime maximum intensities (1982–2023) have linear fits with R2 > 0.95. Likewise,
the standard error of the linear fits averaged across all storms and all days is only 0.13 ms−1 ◦C−1 (<2% of
the median slope across all storms). We take the median slope across all days as the model’s best estimate,
and evaluate the uncertainty in slopes, expressed by σlower and σupper, as either a) the 95% confidence interval
from assuming the full set of slopes calculated from all 930 daily environments in tbm follows a normal
distribution (i.e.±1.96σtbm , shaded with gray throughout), or b) from the range described by the 5th and
95th percentiles of the subset of profiles in tbm that share a decile with the observed SST at the storm’s LMI
(shaded with red or dSST colors throughout). These errors represent interannual uncertainties in the local
relationship between SSTs and PI either accounting for the full range of environmental conditions (a more
conservative and general approach, with relatively larger slope ranges), or a subset of those conditions
conditional on their SST decile (a less conservative/more specific approach, with a typically smaller range in
slopes), respectively.

Figure 6 illustrates PI sensitivity calculations using Hurricane IAN (2022) as an example, with a median
of 8.3m s−1 ◦C−1. Fits between SST step changes (∆SST) and the responses of PI (∆PI) demonstrate their
strong linear relationship across the climatological set of local environmental conditions. The spread in PI
sensitivities conditioned on the observed SST decile (red shading) are narrower than the response to the full
range of atmospheric profiles (gray shading), a result consistent across deciles (figure 6, top right panel).
While sensitivities and errors vary with SST decile—demonstrating some small nonlinearities as a function
of SSTobs—

dPI
dSST values computed at IAN’s LMI remain between ~6.5 and 11.5 m s−1 ◦C−1 across the range

of climatological profiles IAN could have reasonably historically encountered in the season and location it
reached its maximum.

Sensitivity calculations across 2019–2023 hurricanes (bottom panel of figure 6) show that median PI
sensitivities to SST are frequently between ~8–11m s−1 ◦C−1. Sensitivities conditioned on the SSTobs decile
are generally higher in the open Atlantic, while across the Gulf of Mexico and Caribbean PI sensitivities are
lower. Sensitivity errors due to variance in atmospheric conditions generally increase with latitude
(supporting figure S4). There appears to be discontinuity across the range of full profile sensitivities for
storms with LMIs above 30◦ N, where dPI

dSST is more tightly restricted to between 7 m s−1 ◦C−1 and 12 m
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Figure 6. (Top left) Median (black line) and confidence intervals of potential intensity changes in response to step-wise SST
changes between−1.25 ◦C and+1.25 ◦C over the full set of environmental profiles surrounding IAN’s LMI (930 daily
environments per tbm, gray shading) or a subset of profiles associated with IAN’s observed SST (93 daily environments per decile,
red shading). Dots illustrate individual sets of sensitivity calculations with environmental conditions from 30 randomly chosen
days. (Top right) Confidence intervals shown across the range of observed SST deciles; dashed line indicates the observed SSTobs

at Hurricane Ian’s LMI. (Bottom) Median and confidence intervals of PI sensitivity to SST changes (m s−1 ◦C−1) across 38
storms during the 2019–2023 hurricane seasons.

s−1 ◦C−1 (not shown); this discontinuity could mark the influence of the boundary between tropical and
extratropical regimes, but it does not significantly influence results. There are no apparent systematic
seasonal dependencies among the dPI

dSST values analyzed in this study.
The PI sensitivities we find are broadly consistent with previous studies that have estimated dPI

dSST with
idealized models, global climate models, and theory (Vecchi and Soden 2007, Ramsay and Sobel 2011,
Rousseau-Rizzi and Emanuel 2021). In this study we have not explicitly disentangled or assumed either a
weak-temperature gradient response or radiative convective equilibrium response to changes in local
conditions. Instead we compute PI sensitivities directly from the data, and our results show that
empirically-derived local sensitivities from observations are closer to the typical weak-temperature gradient
response (~8 m s−1 ◦C−1), but can be larger or smaller than this theoretical weak-temperature gradient
slope, depending on season and location.

The attributable human-caused SST shifts applied in this study have particular spatial structures that we
consider locally (cf figures 4, 5 and supporting figures S2 and S4). While this is justified because local SSTs
are the primary controlling factor in observed North Atlantic potential intensity and hurricane activity (e.g.
Emanuel et al 2013, Murakami et al 2018), the degree to which global forcing can influence the long-term
evolution of PI through local SST changes is still an open area of investigation. In each case, locally observed
T and q profiles will influence the climatological local sensitivity of PI to SST changes in the modern climate
(as expressed in the spread of the quantified sensitivity uncertainties, figure 6). Such environmental
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Figure 7. Historical and counterfactual scenario (cf table 1) survival functions of AI distributions for 38 storms analyzed over the
2019–2023 hurricane seasons. Red shading denotes the 95% confidence interval of dAImod across the distribution of storms.
Hurricane IAN’s AImod and dAI are shown with a blue dashed line, for reference.

influences are important to consider when computing hurricane intensity responses to SST forcing (Done
et al 2022). Attributable changes could arise through local forcing (i.e. literally, the warming or moistening of
local atmospheric columns due to human-caused climate change), or nonlocally through remote changes in
outflow temperatures or a tropics-wide increase in tropospheric saturation moist static energy; each of these
could depress PI if they exhibit long-term changes (e.g. Bister and Emanuel 2002, Vecchi and Soden 2007,
Rousseau-Rizzi and Emanuel 2021). Our SST-driven approach does not directly account for historical
attributable changes in T and/or q by developing and implementing individual counterfactuals for them.
Instead, we address these potentially mitigating influences by (a) using the variability of local environmental
profiles to inform sensitivity uncertainties as described here, and by (b) implementing the
nonlocally-damped counterfactual, as described above (dSSTNL, section 2.2). dSSTNL indirectly but expressly
quantifies how these nonlocal but potentially attributable changes could impact attributable PI through
damping from tropics-wide SST warming.

Equation (2) is computed at the time and location of storm’s LMI over 2019–2023 (described further
below). Combined dPI uncertainties are quantified by resampling from each dSST scenario and dPI

dSST
distributions separately (assuming they are normal) with Monte Carlo simulations, recalculating
equation (2) with each sample pair, and aggregating. We draw 10 000 sample pairs with replacement and
aggregate them to determine the final median and confidence intervals of each counterfactual scenario dPI,
for each storm. Because dSST Modern scenario uncertainties are relatively larger than those of PI
sensitivities, they tend to dominate the range of Modern dPI responses to historically attributable SST shifts
(section 3.3.2).

3.3. Attributable influence on real-world storms
3.3.1. 2019–2023 hurricane seasons
Aggregated survival functions of observed actual intensities and counterfactual AIs (i.e. the probability of an
AI being at least a certain value) are shown in figure 7. The Zonal-mean AIcf largely agrees with the Modern
AIcf, while the ERSST AIcf is slightly faster, and the Nonlocally-damped AIcf is faster still. Each assessed
counterfactual intensity, however, falls within the bounds of the Modern AIcf uncertainties (red shading in
figure 7). In contrast, our results show a clear emergence of observations fromModern scenario uncertainties
across most of the AI distribution, providing statistical evidence that attributably-warmer SSTs intensified
many observed hurricanes over 2019–2023.

The full set of Modern scenario dAI and uncertainties are presented in figure 8, alongside the observed AI
and Modern AIcf of each storm against Saffir–Simpson categories. For reference we show the mean dAI
across all 38 storms (8.3m s−1) and the mean dAI uncertainty (the storm-by-storm 2σ magnitude;
6.6m s−1), further demonstrating the robustness of attributability across the set of storms analyzed (and
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Figure 8. (Top panel) Attributable shifts in AI between observed AI and the Modern counterfactual scenario AI (m s−1) across 38
storms during the 2019–2023 North Atlantic hurricane seasons. Shown are the median (black dots) and 95% confidence intervals
calculated from by combining Modern scenario dSST uncertainties with sensitivity uncertainties either from the full set of
environmental profiles (gray bars), or from a subset of profiles associated with each storm’s observed SST (dark red bars).
(Bottom panel) Observed (black dots) and Modern scenario (dark red dots) actual intensities for each storm plotted against
Saffir-Simpson Categories 1–5 in m s−1. For reference are shown the storm-mean attributable AI shift and storm-mean dAI
uncertainties from the subset of profiles associated with observed SSTs (i.e. averaging across dark red bars in the top panel).

subject our study limitations). Two storms in the dataset exhibited ν >1.0 (red lines in figure 8, bottom
panel); their inclusion does not qualitatively affect our results.

The majority of storms have a Modern scenario median dAI between 6 and 10m s−1. BARRY (2019) has
the lowest median estimate (3.3m s−1) and ZETA (2020) has the largest median estimate (14.8 m s−1). DON
(2023) displays the largest uncertainty, with its 95% confidence interval (across its full set of daily
environments) spanning over 25m s−1. NANA (2020) has the most tightly constrained set of attributable
estimates, with a Modern dAI falling between 1.7 and 6.5m s−1. While the contributions to uncertainty from
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Figure 9. Attribution counterfactual scenarios (bars colored by scenario, table 1), sensitivities (filled circles colored by
assumption, figure 6), and their 95% confidence intervals at the location of Hurricane IAN’s lifetime maximum intensity on 28
September 2022. From left to right: attributable sea surface temperatures (dSST, ◦C), linear PI sensitivities to SST changes ( dPI

dSST
,

m s−1 ◦C−1), attributable potential intensities (dPI, m s−1), and attributable actual intensities (dAI, m s−1). Included for
reference are the local SST, relative intensity (i.e. AI/PI), PI, and AI.

attributable SST shifts and PI sensitivities vary from storm to storm, SST-scenario uncertainties principally
control the range in dAI estimates; this is evidenced by the minimal differences between results from the full
set and SST-decile subset of environmental conditions in final dAI estimates.

Across the 38 storms studied, 30 (79%) have a Modern AIcf that is a category lower than their observed
maximum AI. This is partially happenstance, because it depends on how far into a category’s definition each
storm’s original AI is found. However, the average dAI across all storms (8.3m s−1) is very close to the
average width of each bounded category definition (~8.25m s−1 between Categories 1–4), enabling the
calculated dAI to frequently move a storm from a higher category in observations to a lower category in the
estimated counterfactual scenario.

3.3.2. Hurricane IAN (2022) case study
Figure 9 shows the SST-driven attribution analysis at Hurricane IAN’s LMI (28 Sept. 2022, 82.75◦ W, 26◦ N).
IAN reached its maximum intensity in the band of attributably warmer SSTs along the U.S. Gulf coast
(supporting figure 1). Median attributable SST shifts at IAN’s LMI range between 0.6 and 1.3 ◦C, with a
high-end Modern scenario estimate breaching>2 ◦C. IAN’s LMI is located near the regional minima of
attributable ERSST shifts (figure 5), leading to a lower-bound estimate of ~0.45 ◦C from the ERSST scenario.
The Zonal-mean dSST scenario estimate is consistent with (and less warm than) the Modern scenario, while
the Nonlocally-damped scenario is slightly warmer than ERSST’s attributable shift.

Paired with these above-storm-average attributable SST shifts at the time and location of IAN’s LMI
(compared with the full set of 38 storms over 2019–2023, section 3.3.1) is a below-storm-average local PI
sensitivity to SSTs (cf figure 6). The Caribbean and Gulf of Mexico consistently have the lowest PI sensitivities
to SST changes among those calculated, which constrains IAN’s PI sensitivity to between 7–10m s−1 ◦C−1.

Altogether, despite being the third-most intense storm over the last five years, IAN has a moderate
attributable change in intensity due to SST shifts, with a mean dAI between 4 and 8.5m s−1 across the
counterfactual scenarios. The total uncertainty in IAN’s dAI is dominated by the uncertainties contributed
by dSSTmod, with attributable intensity shifts spanning over 3–14 m s−1. Notably, across the range of
scenarios these shifts emerge from the uncertainty (cf figure 7), being significantly greater than 0m s−1,
indicating that historically attributable SSTs robustly increased Hurricane IAN’s intensity by at least 4% (and
possibly up to 21%).
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4. Discussion

This work has used an SST-based strategy, primarily considering how local North Atlantic attributable
changes in SSTs have influenced actual hurricane intensities through potential intensity theory. But other
local and nonlocal factors beyond our scope may also have influenced attributable changes in hurricane
intensities since pre-industrial. Changes in atmospheric circulation or hurricane wind shear, for instance,
could be correlated with warming and ultimately influence how PI relates to actual intensities, or affect the
magnitude of the PI response itself through changes in surface winds (Zhang and Delworth 2009, Emanuel
et al 2013). Oceanic feedback between hurricane activity and in-situ SST cooling could limit the final
influences of attributable SST changes (e.g. Lloyd and Vecchi 2011). An historically-attributable poleward
migration of storms could also offset intensity increases in the Atlantic (Kossin et al 2014, Lin et al 2023), but
track shifts have not been considered in this work’s univariate storyline attribution approach.

A limitation of this study is that it has not comprehensively assessed how nonlocal atmospheric responses
to global warming could influence hurricane attribution estimates. The framework relies on local absolute
SST changes, rather than North Atlantic SST changes relative to the rest of the tropics, to drive attributable
computations. Nonlocal historical changes in the moist static energy content of the tropical troposphere
could act to reduce PI’s sensitivity to local SST changes, damping the resulting response to local attributable
SST changes (Vecchi and Soden 2007, Ramsay and Sobel 2011, Rousseau-Rizzi and Emanuel 2021). The
Nonlocally-damped scenario employed in this work makes a simplified adjustment to the modern
counterfactual to implicitly account for nonlocal damping through correlation with the tropical atmosphere
response, following (Swanson 2008). The median estimate of nonlocally-damped attributable potential
intensity changes is 7.2m s−1 (on average) across 2019–2023 storms, ~63% of the median PI response in the
Modern scenario (11.5m s−1). If the local PI response to global warming was perfectly damped in an
idealized climate, then PI sensitivity might be expected to follow a radiative convective equilibrium response,
~15%–20% of the transient weak-temperature gradient response (which the empirically-derived sensitivities
found herein are more closely aligned with). The mismatch suggests that either the attribution framework is
underestimating the magnitude of nonlocal damping from historical tropical-mean changes, or that the real
atmosphere is responding different from idealized modeling—transiently adjusting such that nonlocal and
local affects are difficult to disentangle with the empirical sensitivity approach—or some degree of both.
Future improvements to the attribution framework should consider these possibilities.

Atmospheric aerosols play a subtle role in our methodology and results. Aerosol-driven cooling and a
Saharan-dust feedback are known to have affected Atlantic SST variability and trends during the second half
of the 20th century (Booth et al 2012, Murakami et al 2018, Rousseau-Rizzi and Emanuel 2022). An
aerosol-driven SST warming trend since ~1980 could mask the attributable magnitude and spatial signal of
greenhouse gas warming on Atlantic SSTs. This study addresses the potentially confounding signals of
aerosols and global warming in two ways. First, aerosol emissions are implicitly included in the expression of
anthropogenic forcing on Atlantic SSTs, i.e. the aerosol signal—and the associated attributable evolution of
SSTs over time and space—is not explicitly separated from the human emissions considered by the
attribution framework (e.g. Murakami et al 2020). In this way, local aerosol influences are considered
attributable in the same respect that greenhouse gas influences are. Second, an ERSST counterfactual
scenario is developed and applied to directly consider SST correlations with global temperature over every
year since 1900, wholly encompassing the temperature depression and rebound from mid-century
human-made aerosol emissions. Comparison between the Modern and ERSST scenarios reveal the spatial
structure of departures between recent and long-term trends, highlighting where aerosol-rebound warming
may play an outsized role in present-day attribution assessment. Differences are most apparent in the Gulf of
Mexico and southern portion of the eastern tropical Atlantic. Future work could explicitly separate and
further investigate these influences.

5. Conclusions

This study has proposed and applied a novel framework to rapidly assess attributable changes in North
Atlantic hurricane intensities due to attributable SST changes since the pre-industrial period. Counterfactual
scenarios of local attributable SSTs developed from recently published multi-method attribution analyses
(Giguere et al 2024) are combined with empirical estimates of potential intensity sensitivity to SST, in order
to estimate attributable PI changes due to various representations of attributable SST warming. The robust
statistical relationship between actual and potential intensities (e.g. Emanuel 2000, Gilford et al 2019) is
leveraged to calculate the SST-driven attributability of hurricane intensities (see Sobel et al 2016, Sparks and
Toumi 2024). The behavior and results from this rapid attribution framework are illustrated with observed
storms from five recent hurricane seasons, 2019–2023. The resulting attributable intensity changes at the
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location and times of storm lifetime maximums indicate that there are robust and detectable SST-warming
influences on recent observed North Atlantic hurricane intensities—a trend expected to continue in the
hurricane seasons to come.

Analyses of 38 hurricanes over the 2019–2023 hurricane seasons show that modern storms are ~8.3m s−1

(about a category) more intense, on average, than they would have been in a world without human-driven
North Atlantic SST warming. While the mean attributable SST influence varies from storm to storm based
on their location and season, uncertainty analysis show hurricane intensities are robustly increasing: 32 of
the 38 storms studied (84%) have SST-driven attributable intensity changes significantly>0m s−1. Nine of
the storms studied have 95% confidence interval upper bounds on attributable intensity changes that exceed
+20m s−1; in these ‘highest-case’ scenarios, climate change could have increased these storm’s intensities by
at least two categories, compared to what they would have been in a cooler counterfactual world.

The attributable shifts and uncertainties for any given storm’s intensity depends on the PI sensitivities
and historically-observed or modeled SST changes at the location and time where the storm reached it
maximum. Nevertheless, SST-driven attributable increases in recent hurricane intensities are generally
highest for the most intense storms. Taken together with increasing SST attributability (as GMT continues to
rise), this study’s results are consistent with recent historical analyses finding that major hurricanes are
becoming more common (Kossin et al 2020). Several recent storms had large median attributable increases
of ~14–15m s−1, including hurricanes HUMBERTO (2019), ZETA (2020), and FRANKLIN (2023).

The storyline attribution approach used here permits a close examination of how different expressions of
SST distribution shifts could distinctly influence individual hurricane intensities. Four counterfactual
scenarios were considered, together designed to investigate the range of possibilities for how North Atlantic
hurricane intensities might respond to SST warming caused by global climate change. The baseline Modern
counterfactual scenario is based on the published findings of Giguere et al (2024), using linear empirical
estimates from OISST (1982–2021) combined with climate model outputs to estimate the spatially-resolved
mean SST shifts and uncertainties since 1900. Results from the Modern scenario have the largest attributable
changes, but also have large uncertainties. The Zonal-mean counterfactual scenario takes the global
zonal-mean of attributable SSTs from the Modern counterfactual, an approach more consistent with global
climate forcing; its results are often difficult to distinguish from the Modern scenario, but it generally has
slightly cooler attributable SST shifts (especially in the Caribbean). The ERSST scenario uses linear empirical
estimates from a long-term SST dataset (1900–2021); results are coarser and weaker than the Modern
baseline, but tend to have smaller uncertainties because of the longer period over which the underlying
regression between SST and GMT is performed. Finally, the Nonlocally-damped scenario is based on the
Modern scenario, but reduces its magnitude as a first order estimate accounting for nonlocal damping
processes, following Swanson (2008). Nonlocally-damped attributable SST shifts are ~0.45◦ cooler than the
Modern scenario, leading to attributable intensity shifts that are ~35% weaker (on average).

The SST-driven tropical cyclone intensity attribution framework introduced here provides a roadmap for
producing rapid, quantified, and robust attribution estimates of hurricane intensities to support timely
climate communications. To expand communications globally and permit more broadly applicable analyses,
future studies are planned to apply this framework to other ocean basins. Subdividing and comparing
attribution estimates between landfalling and open ocean storms could inform the extent to which
increasingly intense hurricanes could affect populated coastlines and communities (Levin and Murakami
2019, Vecchi et al 2021). Quantifying and communicating the extent to which tropical cyclone intensities are
attributable will ultimately enable stakeholders and the general public to more readily connect the dots
between human-caused climate change and intense storms when they arise (Osaka and Bellamy 2020,
McClure et al 2022, Thomas-Walters et al 2024).

Data availability statement

Regridding was performed with the xesmf package (Zhuang et al 2023). Analysis notebooks and output data
will be available on Zenodo at https://doi.org/10.5281/zenodo.12706456 upon publication.

Data and code supporting the findings of this study are openly available at: https://doi.org/10.5281/
zenodo.12706456.
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